Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway.

نویسندگان

  • M Wanke
  • K Skorupinska-Tudek
  • E Swiezewska
چکیده

Higher plants, several algae, bacteria, some strains of Streptomyces and possibly malaria parasite Plasmodium falciparum contain the novel, plastidic DOXP/MEP pathway for isoprenoid biosynthesis. This pathway, alternative with respect to the classical mevalonate pathway, starts with condensation of pyruvate and glyceraldehyde-3-phosphate which yields 1-deoxy-D-xylulose 5-phosphate (DOXP); the latter product can be converted to isopentenyl diphosphate (IPP) and eventually to isoprenoids or thiamine and pyridoxal. Subsequent reactions of this pathway involve transformation of DOXP to 2-C-methyl-D-erythritol 4-phosphate (MEP) which after condensation with CTP forms 4-diphosphocytidyl-2-amethyl-D-erythritol (CDP-ME). Then CDP-ME is phosphorylated to 4-diphosphocytidyl-2-amethyl-D-erythritol 2-phosphate (CDP-ME2P) and to 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (ME-2,4cPP) which is the last known intermediate of the DOXP/MEP pathway. For- mation of IPP and dimethylallyl diphosphate (DMAPP) from ME-2,4cPP still requires clarification. This novel pathway appears to be involved in biosynthesis of carotenoids, phytol (side chain of chlorophylls), isoprene, mono-, di-, tetraterpenes and plastoquinone whereas the mevalonate pathway is responsible for formation of sterols, sesquiterpenes and triterpenes. Several isoprenoids were found to be of mixed origin suggesting that some exchange and/or cooperation exists between these two pathways of different biosynthetic origin. Contradictory results described below could indicate that these two pathways are operating under different physiological conditions of the cell and are dependent on the developmental state of plastids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors.

The essential steps of the novel non-mevalonate pathway of isopentenyl diphosphate and isoprenoid biosynthesis in plants are described. The first five enzymes and genes of this 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway are known. The herbicide fosmidomycin specifically blocks the second enzyme, the DOXP reductoisomerase. The DOXP/MEP pathway is also p...

متن کامل

The non-mevalonate isoprenoid biosynthesis of plants as a test system for new herbicides and drugs against pathogenic bacteria and the malaria parasite.

Higher plants and several photosynthetic algae contain the plastidic 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate pathway (DOXP/MEP pathway) for isoprenoid biosynthesis. The first four enzymes and their genes are known of this novel pathway. All of the ca. 10 enzymes of this isoprenoid pathway are potential targets for new classes of herbicides. Since the DOXP/MEP pathway ...

متن کامل

Mutations in Escherichia coli aceE and ribB Genes Allow Survival of Strains Defective in the First Step of the Isoprenoid Biosynthesis Pathway

A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and...

متن کامل

Cloning and characterization of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant, Hevea brasiliensis.

Natural rubber is synthesized as rubber particles in the latex, the fluid cytoplasm of laticifers, of Hevea brasiliensis. Although it has been found that natural rubber is biosynthesized through the mevalonate pathway, the involvement of an alternative 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is uncertain. We obtained all series of the MEP pathway candidate genes by analyzing expressed...

متن کامل

The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants.

1 Isoprenoid biosynthesis 1.1 The mevalonate route to isopentenyl diphosphate 1.2 Isoprenoid biosynthesis in higher plants: some contradictions with the mevalonate pathway 2 The discovery of the mevalonate-independent pathway 2.1 The origin of the discovery: the biosynthesis of bacterial hopanoids 2.2 The origin of the carbon atoms of isoprenic units in the mevalonate-independent pathway 2.3 d-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 48 3  شماره 

صفحات  -

تاریخ انتشار 2001